(Pages: 2) 5503 - D05 - IVSBSc (CS) - May - 2014

FOURTH SEMESTER B.Sc.(CS) DEGREE EXAMINATION, 2014 Design and Analysis of Algorithm

Time: Three Hours

Maximum: 80 Marks

Instructions to Candidates:

- Answer any Five full questions.
- Each full question carries sixteen marks.
- L a) Explain the characteristics of an algorithm
 - b) Explain the four distinct study areas of an algorithm.
 - c) Define time complexity.

(6+8+2)

- II. a) Explain divide and Conquer strategy for recursive binary search. Explain with algorithm.
 - b) Sort the given set of numbers using selection sort divide & conquer strategy

35 86 19 26 102 65 78

(8+6+2)

- c) Define Omega (Ω) notation.
- III. a) Find an optimal solution to Knapsack instances,

$$n = 7, m = 30, (p1:p7) = (20,40,30,60,90,10,5)(w1:w7) = (5,8,10,6,15,2,1)$$

- b) Explain the algorithm of Job sequencing with deadlines.
- c) If there are 4 programs of length 15, 3, 20, 4 to be stored on tape. Find the mean retrieval time for optimal ordering. (6+6+4)
- IV. a) Find the product of two matrices using Strassen's matrix multiplication.

$$A = \begin{bmatrix} 4 & 5 \\ 6 & 2 \end{bmatrix} & B = \begin{bmatrix} 8 & 1 \\ 3 & 5 \end{bmatrix}$$

5503-D05-IVSBSc (CS) - M-14

(1)

Turn over

b) Find minimum cost spanning tree for the following graph using $P_{\text{rim}'q} = \frac{1}{2} \frac{1}{$

c) Define optimal solution.

(6+8+2)

- V. a) What is multistage graph?
 - b) Write an algorithm for multistage graph with forward approach.
 - c) Write an algorithm for Inorder, preorder & postorder traversal of binary tree
 - d) What is sum of subsets?

(2+6+6+2)

- VL a) Write an algorithm for back tracking solution to the 0/1 Knapsack problem
 - b) Find the minimum cost tour of a travelling sales person for the following tour

$$\begin{bmatrix} 0 & 8 & 5 & 10 \\ 7 & 0 & 6 & 17 \\ 3 & 8 & 0 & 2 \\ 4 & 18 & 5 & \phi \end{bmatrix}$$

- c) Give 2 difference between Dynamic & divide and conquer technique. (6+8+2)
- VIL a) Explain the Graph traversal techniques with an example.
- b) Write an algorithm for n-queen's algorithm. Explain with an example. (8+8) VIII. Write a short notes on the following (any 4)
 - a) All pairs shortest path algorithm.
 - b) Two way merge tree
 - c) Single source shortest path.
 - d) Performance measurement
 - e) Optimal binary search tree.

 $(4 \times 4 = 16)$