(Pages: 5) 5052 - B62/63 - IISAS - May - 2014

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, 2014

Statistics (Optional)

Paper STTH: 2: CORRELATION & REGRESSION, PROBABILITY DISTRIBUTIONS, ORDER STATISTICS

(New)

Time: Three Hours

76.3

Maximum: 80 Marks

Instructions to Candidates:

- Use of simple / scientific calculator is permitted.
- Mathematical and statistical tables will be supplied on request.
- iii) New syllabus with effect from 2013 2014.

Part - A

Answer any ten questions. Each question carries 2 marks. (10×2=20)

- L a) Define positive correlation and give one example for it.
 - b) Show that if one of the regression coefficients is greater than unity, then the other is always less than unity.
 - c) Write down the plane of regression of X_1 on X_2 and X_3 variates with respective means $\overline{X}_1, \overline{X}_2$ and \overline{X}_3 and standard deviations σ_1, σ_2 and σ_3 in a tri-variate distribution.
 - d) Define multiple correlation coefficient $R_{1,23}$ and give an expression for it in terms of total correlation coefficients $r_{1,2}$, $r_{1,3}$ and $r_{2,3}$ in a tri-variate distribution.
 - e) Give the simple linear regression model duly stating the notations involved in it.
 - f) Define Bernoulli variate. Give its mean and variance.
 - g) Mention any two examples that follow a Poisson distribution.
 - h) Write down the p.m.f. of a negative binomial variate. Give any one distinguishing features of this distribution.
 - i) Define a standard normal variate. Write down its mean and variance.
 - j) Define Beta-variate of second kind.
 - k) Define standard Cauchy distribution.
 - 1) Write down the distribution function of $X_{(n)}$.

Turn over

Answer any six questions. Each question carries 5 marks.

(6×5=30)

- II m) Show that Prof. Karl Pearsons coefficient of correlation always lies between -1 and +1.
 - n) The regression lines of Y on X and of X on Y are respectively $a_1X + b_1Y + c_1 = 0$ and $a_2X + b_2Y + c_2 = 0$. Show that
 - i) Means are $\overline{X} = \frac{b_1 c_2 b_2 c_1}{a_1 b_2 a_2 b_1}$, $\overline{Y} = \frac{a_2 c_1 a_1 c_2}{a_1 b_2 a_2 b_1}$
 - ii) Regression coefficients are $-\frac{a_1}{b_1}$ and $-\frac{b_2}{a_2}$ respectively.
 - o) Assuming that the following expression holds true $(1 R_{123}^2) = (1 r_{12}^2)(1 r_{132}^2)$

Show that : i) $R_{123} \ge r_{12}$

- ii) If $R_{123} = 0$ then $r_{12} = 0$ and $r_{13} = 0$.
- p) Write down the normal equations for estimating the parameters involved in a multiple linear regression model $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i \forall i = 1, 2, ...n$.
- q) Obtain moment generating function and cumulant generating function of a Poisson distribution and show that all its Cumulants are equal.
- Obtain the rth moment about origin for the following exponential distribution $f(x) = \theta e^{-\theta x}, x \ge 0, \theta > 0$ and deduce the recurrence relation for moments $\mu_r^1 = \frac{r}{\theta} \mu_{r-1}^1$.
- s) Show that for a normal distribution $N(\mu, \sigma^2)$, mean deviation about mean is $\sqrt{\frac{2}{\pi}} \sigma$.
- t) Define lower order statistic $X_{(1)}$ and derive its probability density function.

B62/63-IISAS -M - 14

Part - C

Answer the following questions. Each question carries 10 marks.

- u) a) Define i) Professor Karl Pearson's coefficient of correlation
 - ii) Spearman's rank correlation coefficient.
 - b) X and Y are two correlated variables with r = r(x, y)'a' and 'b' are two constants, if $U = a_x$ and V = Y + b Show that:
 - i) r(u,v)=r(x,y)
 - $ii) \quad b_{uv} = a \ b_{xv}$

OR

- v) Define partial correlation coefficient $r_{12.3}$ in a tri-variate distribution. Derive an expression for $r_{12.3}$ in terms of total correlation coefficients r_{12} , r_{13} and r_{23} in a tri-variate distribution.
- IV. w) Establish the following recurrence relation for moments about mean of a binomial distribution B(n, p) in the usual notations $\mu_{r+1} = pq \left[nr \mu_{r-1} + \frac{d \mu_r}{dp} \right]$.

OR

- x) a) Mention any four chief characteristics of a normal distribution.
 - b) Obtain moment generating function and cumulant generating function of $N(\mu, \sigma^2)$ distribution, and hence find mean and variance of the distribution.
- V. y) Define Beta variate of first kind. Obtain the rth moment about origin and hence find mean and variance.

OR

z) X and Y are two independent Gamma variates. Show that $U = \frac{x}{x+y}$ and v = x+y are independently distributed U as Beta I variate and V as Gamma variate respectively. (3×10=30)