Roll No.

[Total No. of Pages: 2

PGIS-N 1029 B-16 M.Sc. Ist Semester Degree Examination Mathematics

(General Topology)
Paper: HCT-1.5
(New)

LIERARY
Karnatak Alis Science &
Commerce College
BIDAR-585 401

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Answer any five full questions.
- ii) All questions carry equal marks.
- 1. a) Define the usual topology μ on the set of reals R. By using the axioms of a topology show that μ is a topology on R. (8)
 - b) Define closure of a subset A in a topological space X. Show that $X \overline{A} = (X A)^0$. (8)
- 2. a) Define limit point of a set. If A & B are subsets of a space X then prove the followings:
 - i) If $A \subset B$ then $D(A) \subset D(B)$

ii)
$$D(A \cup B) = D(A) \cup D(B)$$
 (8)

- b) Let (x, τ) be a topological space and β is a subfamily of τ . Then prove the following two properties of β are equivalent:
 - i) β is a base for τ
 - ii) For each $G \in \tau$ and each $p \in G$ there is $U \in \beta$ such that $p \in U \subset G$ (8)
- 3. a) Let f be a mapping of a space x into a space y and s be the subbase for the topology on y then prove the followings are equivalent:
 - i) f is continuous.
 - ii) The inverse image of each member of s is open in x.
 - b) If $f: x \to y$ be a continuous function and $A \subset x$ then show that $f/A: A \to y$ is continuous. Is the converse true? Justify. (8)

PGIS-N 1029 B-16/2016

(1)

[Contd....

(8)

- 4. a) Prove that a space (x,τ) is a To-space iff for each pair of distinct points $x, y \in x, \overline{\{x\}} \neq \overline{\{y\}}$. (8)
 - b) Define a T_2 -space. If x is T_2 -space and $f: X \to Y$ is a closed bijection then show that Y is a T_2 -space. (8)
- 5. a) Define a Regular space. Show that regularity is a topological property. (8)
 - b) Define subsequence of a sequence. Let $f: N \to X$ converges to 'a' in X then every subsequence of f in X converges to 'a'. (8)
- 6. a) Define a connected. Show that any continuous image of a connected space is connected.
 (8)
 - b) If {A_α : α ∈ D} be a family of connected subsets of a space x such that one of the members of this family intersects every other member then prove that ∪{A_α; α ∈ D} is connected.
- 7. a) Define compact space. Let A be a compact subset of Hausdorff space x and $p \notin A$ then show that there exists disjoint open sets U & V such that $p \in V$ and $A \subset U$ (8)
 - b) Let X be a compact Hausdorff space and Y be an arbitrary space. If $f: X \to Y$ is a continuous closed surjection then prove that Y is also Hausdorff. (8)
- 8. a) Define a metric space. Show that in any metric space, the set of all open spheres is a base for topology on X. (8)
 - b) Define a Lindelof space. Show that every closed subspace of Lindelof space is Lindelof. (8)

