Roll No.

Karnatak Arts Science & Loral No of Pages 2 BIDAR - 585 401

## PGIS-N 1042 B-14

## M.Sc. Ist Semester (CBCS) Degree Examination Computer Science (Mathematical Foundation of Computer Science) Paper -HCT:1.2

(new syllabus under CBCS w.e.f 2011-12)

Time: 3 Hours

Maximum Marks: 80

Instructions to candidates:

- i) Question No.1 in section A is compulsory
- ii) Answer any 5 questions from section-B
- iii) Answer all questions carry equal marks

## Section-A

- 1. a) Suppose that the sets A and B have m and n elements respectively. How many are in AxB? How many different relations are there from A To B? (10x2=20)
  - b) Does  $(p \rightarrow q) \Rightarrow (7q \rightarrow 7p)$  true?
  - c) Represent the following argument in symbolic form. Lions are dangerous animals. there are lions. Therefore there are dangerous animals
  - d) Find r, fi 5pr=6pr-1
  - e) Define partition of a set. Give an example
  - f) Find the complement for the boolean expression: x(y'z' + yz)
  - g) Define the degree of a vertex in a graph
  - h) Draw a graph which is both Hamiltonian and eulerian
  - i) define abelian group? Give and example of a group which is not abelian
  - j) Define a context free grammar with an example

## Section-B

- 2. a) Prove the following equivalence:  $p \to (q \cup r) = (p \to q) \cup (q \to r)$  (6)
  - b) Using mathematical induction, show that (n3+2n) is divisible by 3, for all  $n \ge 1$

PGIS-N 1042 B-14 /2014

(1)

[Contd....

- 3. a) Let R denote a relation on the set Z of all integers defined by R  $R = \{(x, y) : x, y \in z, x y \text{ is multiple of } 3\} \text{ show that R is an equivalence relation}$ 
  - b) Let f(x)=x+2, g(x)=x-2, h(x)=3x,  $\forall x \in R$  find gof, fog, fof, gog, hog and hogof
- 4. a) State and prove De-Morgan's theorem in Boolean Algebra
  - b) Solve the recurrence relation:  $ar+5a_{r-1}+6a_{r-2}=3r^2$
- 5. a) Show that the sum of the degrees of the verticals of a graph is equal to twice the number of edges
  - b) Show that a given connected graph G is an enter graph if and only all vertices of G are of even degree
- 6. a) State and prove the pigeonhole principle.
  - b) If G is a group, then prove the following:
    - i) The identity element of G is unique
    - ii) Every  $a \in G$  has a unique inverse in G
- 7. a) Obtain the grammar that generates. the language:  $L = \{a^nba^n : n \ge 1\}$  is not a finite state language
  - b) Show that the language  $L = \{a^k; k = i^2, i \ge 1\}$  is note a finite state language
- 8. a) Find the distance between X and Y in each of the following cases:
  - i) x = 110110 y = 000101
  - ii) x = 001100 y = 010110
  - iii) x = 11100011 y = 01101100
  - b) Write a short note on any two of the following:
    - i) first order logic
    - ii) unification and SLD-resolution
    - iii) Error defection

1