Karnet http://www.karnatakastudy.com
Commerce Colleg:
585 400
R I PTotal No. of Pages: 2

		with the time to the
Roll No.	E 0	
REORE I 100		

PGIIIS-N 1529 B-2K13

M.A./M.Sc. IIIrd Semester (CBCS) Degree Examination Mathematics (Graph Theory) — Paper - HCT-3.2 (New)

Time: 3 H	ours						Maxi	mum Marks :80	
Instruction	ns to	Candidates:							
i)	A	nswer any five f	fullque	estions					
ii)	A	ll questions Car	ry equ	al marks.					
1. a)	Prov	e that the numb	er of	vertices of	odd deg	ree	in a graph is alwa	ys even. (5)	
b)	Determine the number of edges in a graph with 6 vertices, 2 of degree 4 and 4 of degree 2. Draw the two such graphs. (6)								
c)	c) In any connected graph, define the following terms:								
	i)	Walk	ii)	Path	i	ii)	Trail		
	iv)	Circuit	v)	Cycle.			•	(5)	
2. a)	graph G is a cut vertex of G if and only if there exist vertices u and w $(u, w \neq v)$ such that v is on every u-w path of G.						of a connected and w $(u, w \neq v)$ (6)		
b)								. (4)	
c)	Show that for any graph G with six vertices G or \overline{G} contains a cycle. Also illustrate through an example. (6)								
3. a)	Define a spanning tree in a connected graph. Show that every connected graph							t is acyclic and (6)	
b)								onnected graph (5)	
c)	Sho	w that a connec	ted gr	aph G is a	tree if a	nd o	only if every edge	is a bridge. (5)	
4. a)	Define eccentricity, radius and diameter in a graph. Show that every tree has								
PGIIIS-N	1529	9 B-2K13/2013		(1))			[Contd	

- b) Define Rank and Nullity in a spanning tree. Prove that a graph is a tree if and only if it is minimally connected (8)
- 5. a) Define vertex and edge connectivity of a graph with an example. Prove that in any graph. $K(G) \le \lambda(G) \le \delta(G)$. (12)
 - b) State the Graphical variations of Menger's theorem. (4)
- 6. a) Let G be a nontrivial connected graph. Then prove that G contains an Eulerian trail if and only if G has exactly two odd vertices. (8)
 - b) Find under what condition the complete bipartite graph $K_{m,n}$ has an Eulerian graph. (8)
- 7. a) Let G be a graph with $p \ge 3$ vertices and $\delta \ge p/2$ then show that G is Hamiltonian. (8)
 - b) Prove that a graph H is the block graph of some graph if and only if every block of H is complete. (8)
- 8. a) Show that a graph is the line graph of a tree if and only if it is a connected block graph in which each cut vertex is on exactly two blocks. (8)
 - b) Prove that every tournament has a spanning path. Explain with an example. (8)