[Total No. of Pages: 3

### SVIS-N 326 A-17

## **B.Sc. VIth Semester Degree Examination**

### Mathematics

(Fluid Mechanics, Statistical Analysis, Calculus of Variation & Topology)

**Paper: 6.2** 

(New)

Time: 3 Hours

larks: 80

### **Instructions to Candidates:**

1) Answer all Sections.

#### SECTION-A

L Answer any ten of the following:

 $(10\times 2=20)$ 

- 1) Define compressible fluids.
- 2) Write the expression for Density an specific volume.
- 3) Explain Lagrangian method of Describing fluid motion.
- 4) Define topology.
- 5) What are open sets and closed sets?
- 6) If (X,T) be a topological space where  $X = \{a, b, c, d\}$  and  $T = \{\phi, X, \{b\}, \{a, b\}, \{a, b, d\}\}$ , Then find T neighbourhood of a.
- 7) Define correlation.
- 8) Given  $\bar{x} = 18$ ,  $\bar{y} = 100$ ,  $\sigma_x = 14$ ,  $\sigma_y = 20$  & r = 0.8. Find the regression lines.
- 9) Find mean of Poisson distribution.
- 10) Prove that  $\delta \left( \frac{dy}{dx} \right) = \frac{d(\delta_y)}{dx}$ .
- Explain Geodesics.
- 12) Show that  $y = -x^3 + C_1 x + C_2$  is a curve on which the functional  $\int_0^1 \left[ (y')^2 12xy \right] dx$  assumes extremum.

SVIS-N 326 A-17/2017

(1)

[Contd....

## http://www.karnatakastudy.com

#### SECTION-B

### II Answer any four of the following:

 $(4 \times 6 = 24)$ 

- Derive equation of continuity and obtain the equation of continuity for compressible and incompressible fluid.
- 2) Derive expression for local and individual time rate of change.
- Determine the acceleration of moving fluid at a point (2, 1, 1), at t = 0.25 sec. If u = yz + t, v = xz t, w = xy.
- Solve the variational problem  $\delta \int_0^1 (x + y + y'^2) dx = 0$  under the conditions y(0) = 1, y(1) = 2.
- 5) Derive Euler's equation.
- Prove that Geodesics on a plane are straight lines.

### SECTION-C

III Answer any six of the following.

 $(6 \times 6 = 36)$ 

- 1) Let (X, T) be a topological space and  $x \in X$  be arbitrary then
  - i) There exists at least one neighbourhood of x.
  - ii) For each neighbourhood N of  $x, x \in \mathbb{N}$ .
  - iii) If M is a superset of a neighbourhood N of x then M is also neighbourhood of x.
- 2) Let X be a non-empty set and  $x \in X$ , let there be associated a collection N(x) of subsets of X called neighbourhoods satisfying the following conditions

$$N_i$$
)  $N(x) \neq \phi$ ,  $\forall x \in X$ 

$$N_2$$
)  $N \in N(x) \Rightarrow x \in N$ 

$$N, N \in N(x), M \subset N \Rightarrow M \in N(x)$$

$$N_4$$
)  $N \in N(x), M \in N(x) \Rightarrow N \cap M \in N(x)$ 

N<sub>s</sub>) 
$$N \in N(x) \Rightarrow \exists M \in N(x)$$
 such that  $M \subset N$  and  $M \in N(y)$ ,  $\forall y \in M$ .

Then there exists a unique topology T on X.

# http://www.karnatakastudy.com

- 3) i) In a topological space (X, T) an arbitrary inter section of closed sets is closed.
  - ii) In a topological space (X, T) a finite union of closed sets is closed.
- 4) Find an equation of the best fitting straight line for the data

x: 62 64 65 69 70 71 72

y: 65.7 66.8 67.2 69.3 69.8 70.5 70.9

- 5) The numerical value of correlation coefficient does not exceed unity i.e.  $-1 \le r \le 1$ .
- 6) Find correlation coefficient and regression lines for the data

x: 1 2 3 4 5 y: 2 5 3 8 7

7) Find the value of K for which the following distribution represents a discrete probability distribution. Hence find its mean and S.D. also find  $P(x \le 1)$  and P(x > 1)

x: -3 -2 -1 0 1 2 3P(x): K 2K 3K 4K 3K 2K K

- 8) Find Mean & S.D. of normal distribution.
- 9) Find the value of C for which

 $f(x) = \begin{cases} Cx^2 & 0 < x < 3 \\ 0 & \text{otherwise} \end{cases}$  is a probability density function. Also find

- i)  $P(1 \le x \le 2)$
- ii)  $P(x \le 1)$
- iii) P(x > 1)
- iv) Mean

