Roll No.	[Total No. of Pages : 3
MOR LIVE	 •

SVS-N-338 (5C)-A-21 B.Sc. V Semester Degree Examination MATHEMATICS

Numerical Analysis - 1

Paper : DSE5C (Theory)

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer All the sections.

SECTION-A

L Answer any Ten of the following.

 $(10 \times 2 = 20)$

- If 0.428 is an approximate value of 3/7, find absolute, relative and percentage error.
- Find the number of trustworthy figures in (653)^{1/4} where 653 is correct to 3 significant figures.
- 3. State Regula Falsi method to solve f(x) = 0.
- 4. Prove that $\Delta \left\{ \frac{f(x)}{g(x)} \right\} = \frac{g(x)\Delta f(x) f(x)\Delta g(x)}{g(x+h).g(x)}$
- 5. State Newton Gregary forward difference interpolation formula.
- 6. Prove that $(1 + \Delta)(1 \nabla) = 1$.
- 7. Evaluate $\Delta[x(x+1)(x+2)(x+3)]$.
- 8. Construct the forward difference table for the function $f(x) = x^2 + x + 1$ for the values 0(1)4.
- 9. Express $f(x) = 3x^2 + 9x + 4$ in factorial notation.
- 10. Find the interpolating polynomial for the data

x: 0 1 2 3 4 f(x): 3 6 11 18 27

11. Construct divided difference table for the following

$$\frac{x_1}{y_2} = \frac{1}{4} = \frac{3}{12} = \frac{4}{19}$$

State Lagranges inverse interpolation formula.

SECTION - B

II. Answer any Three of the following:

 $(3 \times 5 = 15)$

- 1. Find the difference $\sqrt{6.27} \sqrt{6.26}$ and evaluate the relative and percentage error.
- Find the product of 137.2 and 372.5 and state how many figures of the result are trust worthy, given that the numbers are correct to 4 significant figures.
- 3. Find a real root of the equation $x^3 x 1 = 0$ by bisection method correct to 3 decimal places.
- 4. Using secant method find a real root of the equations $x^3 4x 9 = 0$ over (2.5,3) correct to 3 decimal places.

SECTION-C

III. Answer any Three of the following:

 $(3 \times 5 = 15)$

- 1. Solve 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16 by Gauss elimination method.
- 2. Solve 5x-y+3z=10, 3x+6y=18, x+y+5z=-10 by Jacobi's method with (3,0,-2) as initial approximation.
- 3. Solve 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14 by Jacobi's method.
- 4. Using Gauss scidal method, solve the following equations. 5x y = 9, x 5y + z = 4 and y 5z = 6.

SECTION - D

IV. Answer any Three questions.

 $(3 \times 5 = 15)$

- 1. Construct the forward difference table for the function $f(x) = x^3 + x^2 2x + 1$ for the values x = 0(1)5. Find f(6) by extending the table.
- 2. Find the 8th term of the sequence, 7,15,35,72,131,217,....
- 3. Evaluate $(\nabla + \Delta)^2 (x^2 + 2x)$.

4.	Express the polynomial $f(x) = 11x^4 + 5x^3 + x - 15$ and its successive differences in factorial notation.								
			SEC	CTION-E					
Ans	swer any T	hree of the	following.				(3.6.40		
1.	From the 40 and 4	who obtained	(3×5≃15 d marks between						
	Marks:		30-40	40-50	50-60	60-70	70-80		
	No. of st	tudents :	31	42	51	35	31		
2.	Find the polynomial of lowest degree by using Newtons divided difference formula for the data								
	<i>x</i> :	-2	1	3	7	8			
	f(x):	10	4	40	424	620			
3.	Find f(0.7) by using Lagranges formula, given that								
	<i>x</i> :	0.3	0.5	0.6	0.8				
	f(x):	-0.91	-0.75	-0.64	-0.36				
4.	Find x for which $y = 7$ by using Lagranges inverse interpolation formula, given that								
	r :	1	3	4					

4.

V.

19

12

y: