Roll No. _____

[Total No. of Pages: 3

SIS 068 B-2K13

B.A./B.Sc. Ist Semester Degree Examination

Mathematics

(Calculus-I)

Paper - 1.2

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer all questions.

Section - A

L Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1) If $f(x) = \begin{cases} x^2 + 3 & \text{if } x \le 1 \\ x + 1 & \text{if } x \ge 1 \end{cases}$ find the limit of f(x) as x tends to 1, if it exists.
- 2) Examine the differentiability of the function $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{when } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$
- 3) Find the nth derivative of y = log(ax + b) w.r.t x.
- 4) Find $\tan \phi$ if $\frac{2a}{r} = 1 \cos \theta$.
- 5) Show that the curves $r = ae^{\theta}$, $b = re^{\theta}$ intersect orthogonally.
- 6) Find the pedal equation of the curve $r^2 = a^2 \cos 2\theta$.
- 7) Find ds/dt if $x = a\cos t$, $y = b\sin t$.

[Contd....

http://www.karnatakastudy.com

- 8) Find the envelope of the family of curves $x \cos \alpha + y \sin \alpha = p$, α being the parameter.
- 9) Show that $y=e^x$ is concave upwards everywhere.
- 10) Find the asymptotes parallel to the coordinate axes for the curve $x^2y^2 y^2 = 2$.
- 11) Define the terms Node, Cusp of a double point.
- 12) If $y = \sin 4x \sin 2x$. Find y_2 .

Section - B

II. Answer any four of the following:

 $(4 \times 5 = 20)$

- 1) State and prove Leibnitzs rule to find the nth derivatives of the product of two functions.
- 2) Find nth derivatives of $e^x \cos^2 x \sin x$ w.r.t x.
- 3) If $y = \frac{\sin^{-1} x}{\sqrt{1 x^2}}$ show that $(1 x^2)y_{n+2} (2n+3)xy_{n+1} (n+1)^2 \cdot y_n = 0$.
- 4) Find the slope of the tangent at any point (r, θ) on the curve $r = a(1 + \sin \theta)$. Further show that the tangent at the point $\theta = \frac{\pi}{2}$ is parallel to the initial line.
- 5) Show that the pairs of curves $r = a(1 + \sin \theta)$, $r = b(1 \sin \theta)$ intersect orthogonally.
- 6) Find the p-r equation of the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$.

Section - C

III. Answer any four of the following:

 $(4 \times 5 = 20)$

1) Show that the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the radius of curvature is given by $g = \frac{a^2b^2}{p^3}$, where p is the length of the perpendicular from the centre upon the tangent at (x,y).

http://www.karnatakastudy.com

- Find the coordinates of the centre of curvature at (x,y) for the curves $x = a(t + \sin t), y = a(1 + \cos t)$
- Find the envelope of the family of ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a and b are parameters connected by the relation ab=c² where 'c' is a known constant.
- 4) Find all the asymptotes of the curve $x^3 + y^3 3axy = 0$.
- 5) Find the position and nature of the double points on the curve $x^3 + y^3 = 3axy$.
- 6) Trace the curve catenary $y = c \cosh\left(\frac{x}{c}\right)$, c > 0.