Roll No.

[Total No. of Pages: 3

SIS - N 065 B-17

B.A./B.Sc. Ist Semester Degree Examination

Mathematics

(Algebra and Vectors)

Paper: 1.1 (New)

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer all the sections.

SECTION-A

L. Answer any TEN of the following.

 $(10 \times 2 = 20)$

- 1. Show that the only matrix which is both symmetric and skew symmetric is zero matrix.
- 2. If iA is a skew Hermitian matrix, then show that A is Hermitian matrix.
- 3. Let A be $n \times n$ orthogonal matrix then prove that A' is orthogonal.
- 4. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$ by reducing in to echelon form.
- 5. Define consistent and inconsistent for system of linear equation.
- 6. Find the EIGEN values and Eigen vectors of the matrix $\begin{bmatrix} -3 & 8 \\ -2 & 7 \end{bmatrix}$
- 7. If \vec{a} , \vec{b} , \vec{c} are three non coplanar vectors then show that $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$ are non coplanar.
- 8. Find the set of vectors reciprocal to the vectors i+2j+3k; 5i-j-k, i+j-k.
- 9. Increase the roots of the equation $x^4-24x^2-13x+35=0$ by 2.
- 10. Show that the equation $2x^7-x^4+4x^3-5=0$ has at least four complex roots.
- 11. If a/b and b < a where 'a' and 'b' are non negative integers then prove that b = 0.
- 12. Define g.c.d and relatively prime numbers.

Contd....

http://www.karnatakastudy.com

SECTION-B

II. Answer any Four of the following.

 $(4 \times 5 = 20)$

13. Find the rank of the matrix A by reducing into its normal form where

$$A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & -2 & -4 \\ 2 & 4 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

14. Find the inverse of the matrix A by elementary transformation where.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

15. Find the value of λ for which the given system has non-trivial solution.

$$7x + 4y + 3z = 0$$

$$\dot{x} + 2y + \lambda z = 0$$

$$x + 3y + 2z = 0$$

16. Test the following system for consistency and solve if it is consistent.

$$x+2y-z=3$$

$$3x - y + 2z = 1$$

$$2x-2y+3z=2$$

- 17. If λ is an eigen value of the matrix A then prove that
 - i) λ^2 is an eigen value of A^2
 - ii) $\frac{1}{\lambda}$ is an eigen value of A-1 Provided A is non singular.
- 18. Verify Caylay Hamilton theorem for the matrix $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ hence find A^{-1}

http://www.karnatakastudy.com

SECTION-C.

III. Answer any four of the following.

 $(4 \times 5 = 20)$

- 19. Find the value of λ , so that the vectors 2i-j+k; i+2j-3k; $3i-\lambda j+5k$ are co-planar.
- 20. If \vec{a} , \vec{b} , \vec{c} and \vec{a}^{\dagger} , \vec{b}^{\dagger} , \vec{c}^{\dagger} are reciprocal system of the vectors, then show that $\vec{a}^{\dagger} \times \vec{b}^{\dagger} + \vec{b}^{\dagger} \times \vec{c}^{\dagger} + \vec{c}^{\dagger} \times \vec{a}^{\dagger} = \frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]} \left[\vec{a} \ \vec{b} \ \vec{c}\right] \neq 0$
- 21. Define Mobius function and prove that the function ' μ ' is multiplicative function.
- 22. For any positive integer 'm' prove that $\phi(m^2) = m \phi(m)$
- 23. Solve by Descart's method $x^4 + 8x^3 + 9x^2 8x 10 = 0$
- 24. Solve the equation $x^3 15x 126 = 0$ by Cardon's method.

http://www.karnatakastudy.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से