PGIIS-N 1005 A-2K14

M.Sc. IInd Semester (CBCS) Degree Examination

Mathematics

(Partial Differential Equations)

Paper - HCT 2.1

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Answer any five questions.
- 2) All questions carry equal marks.
- 1. a) Define the following with examples.
 - i) Linear equation.
 - ii) Semi-linear equation.
 - iii) Quasi-linear equation.
 - iv) Non-linear equation.

(8)

- b) Derive partial differential equation by the elimination of arbitrary function F from the equation F(u,v)=0 where u & v are functions of x, y and z. (8)
- 2. a) Find the equation of the integral surface of the differential equation. 2y(z-3) p+(2x-z)q=y(2x-3) which pass through the circle z=0, $x^2+y^2=2x$ (8)
 - b) Find the surface which intersect the surfaces of the system z(x+y) = c(3z+1) orthogonally and which passes through the circle $x^2+y^2=1$, z=1. (8)
- 3. a) Reduce the equation $\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form. (8)
 - b) Explain separation of variables method for solving the partial differential equation.

$$Rr+Ss+Tt+Pp+Qq+Zz=F. (8)$$

- 4. a) Derive the necessary condition for the families of equipotential surfaces. (8)
 - b) Show that the surfaces $x^2 + y^2 + z^2 = Cx^{\frac{2}{3}}$ can form a family of equipotential surfaces and find the general form of the corresponding potential function. (8)

a)	http://www.karnatak Explain elementary solutions of the one dimensional wave equation.	astudy.com (8)
b)	Obtain the solution of the one-dimensional wave equation	
	$\frac{\partial^2 u}{\partial r^2} = c^2 \frac{\partial^2 u}{\partial r^2}$ by using the method of separation of variables.	(8)

a) Solve the diffusion equation
$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$$
 using variable separable method. (8)
b) Obtain the solution of the two dimensional diffusion equation $\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = \frac{1}{k} \frac{\partial \theta}{\partial t}$ (8)

7. Derive Jacobi's method of obtaining solution of non-linear partial differential equations a) of order one with three independent variables.

b) Find the complete integral of the following.
i)
$$q^2y^2 = z(z-px)$$

ii) $r^2(x^2+x^2) = x^2+x^2$

ii)
$$z^2(p^2+q^2)=x^2+y^2$$

8. Solve the following equations

Solve the following equations

5.

6.

b)

b)

http://www.karnatakastudy.com/

Solve the following equations
$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

Solve the following equations
a)
$$r+4s+t+(rt-s^2)=2$$

$$r+3s+t+(rt-s^2)=1$$

(10)

(6)

(8)

(8)