Roll No.

Commandade Arts Science & Command No. of Rages: 3

PGIS-N 1022 B-2K13

M.A./M.Sc. Ist Semester (CBCS) Degree Examination

Mathematics

(Ordinary Differential Equations)

Paper - HCT - 1.3

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to candidates:

- 1) Answer any five questions.
- 2) All questions carry equal marks.
- 1. a) For any real x_0 , and constants α, β then prove that there exists a solution ϕ of the initial value problem $y'' + a_1 y' + a_2 y = 0$ on $-\infty < x < \infty$ satisfying $y(x_0) = \alpha, y'(x_0) = \beta$. (8)
 - b) Let ϕ be any solution of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a point x_0 , then prove that for all x in I $\|\phi(x_0)\|e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\|e^{k|x-x_0|}$ Where $\|\phi(x)\| = \left[|\phi(x)|^2 + |\phi'(x)|^2\right]^{1/2}$, $k = 1 + |a_1| + |a_2|$ (8)
- a) Let α₁, α₂,....., α_n be any n constants. Let x₀ be any real number on any interval I containing x₀, then prove that there exist at most one solution φ of the initial value problem L(y)=0 satisfying. φ(x₀) = α₁, φ'(x₀) = α₂,....., φ⁽ⁿ⁻¹⁾(x₀) = α_n.
 - b) Let $\phi_1, \phi_2,, \phi_n$ be 'n' solutions of L(y)=0 on an interval I, then prove that

$$W(\phi_1, \phi_2, ..., \phi_n)(x) = \exp\left[-\int_{x_0}^x d_1(t) dt\right] W(\phi_1, \phi_2, ..., \phi_n)(x_0).$$
 (8)

PGIS-N 1022 B-2K13/2013

(1)

[Contd....

- 3. a) Explain the method of finding Green's Function of $L_y = P \frac{d^2y}{dx^2} + \frac{dp}{dx} \cdot \frac{dy}{dx} + qy = 0$ where

 L is the differential operator with boundary conditions $\alpha y(a) + \beta y'(a) = 0$ $\gamma y(b) + \delta y'(b) = 0$ (8)
 - b) Find the Green's function corresponding to differential operator $L = \frac{d^2}{dx^2}$ with boundary conditions y(0)=0,y(1)=0. (8)
- 4. a) Define Eigen values and Eigen functions of the sturm Liouville problem $\frac{d^2y}{dx^2} + \lambda y = 0$.
 - b) Find the Eigen values and Eigen functions of the sturm Liouville's problem $\frac{d}{dx} \left[\left(x^2 + 1 \right) \frac{dy}{dx} \right] + \left(\frac{\lambda}{x^2 + 1} \right) y = 0 \text{ with } y(0) = 0 = y(1).$ (12)
- 5. a) Transform the following equations into an equivalent self-adjoint equation.
 - i. $x^2 \cdot y'' 2xy' + 2y = 0$

ii.
$$f(x).y'' + g(x)y' = 0$$
 (8)

- b) If u(x) and v(x) be real linearly independent solutions of [r(x)y']' + P(x)y = 0 on $a \le x \le b$ then prove that between two consecutive zeros of u(x) there is exactly one zero of v(x) and vice-versa. (8)
- 6. a) Let y(x) and z(x) be non-trivial solution of [r(x)y']' + P(x)y = 0.....(1) and [r(x)z']' + q(x)z = 0.....(2) where r(x) > 0; r(x), p(x) and q(x) are continuous on $a \le x \le b$ and q(x) > p(x). If the solution y(x) of the equation (1) has consecutive zeros at $x = x_0$, and $x = x_1(x_0 < x_p)$, prove that a solution z(x) of equation (2) which vanishes at $x = x_0$ will vanish again on the interval $x_0 < x < x_1$.
 - b) Obtain the formal expansion of the function f, where $f(x) = \pi x x^2$, $0 \le x \le \pi$, in the series of orthonormal characteristic function $\{\phi_n\}$ of the sturm-Liouville problem

$$\frac{d^2y}{dx^2} + \lambda y = 0, \text{ with } y(0) = 0, y(\pi) = 0.$$
 (6)

PGIS-N 1022 B-2K13

(2)

7. a) Derive picard's iterative method for obtaining the approximate solution of the problem,

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0.$$
 (8)

- b) Find the third approximation of the equation $\frac{dy}{dx} = z$, $\frac{dz}{dx} = x^3(y+z)$ by picard's method where y = 1, $z = \frac{1}{2}$ when x = 0.
- 8. a) Show that there are two values of k for which $\frac{k}{x}$ is an integral of $x^2(y_1 + y^2) = 2$, and hence obtain the general solution. (5)
 - b) Explain the method of solving the Riccati's equation $y_1 = P + Qy + Ry^2$. Where P,Q,R are functions of x, when its one particular integral is known. (5)
 - c) Find the general solution of the equation $x^2y_1 + 2 2xy + x^2y^2 = 0$. (6)

PGIS-N 1022 B-2K13