Roll No.

[Total No. of Pages: 2

PGIS-N 1029 B-2K13

M.A./M.Sc. Ist Semester (CBCS) Degree Examination

Mathematics

(General Topology)

Paper - HCT-1.5

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to candidates:

- 1. Answer any five questions.
- 2. All questions carry equal marks.
- 1. a) Define the usual topology U on the set of reals \mathbb{R} . By using the axioms of a topology, show that U is a topology on \mathbb{R} . (8)
 - b) If A and B are the subsets of a topological space X then prove the following.
 - i) $\frac{1}{A}$ is the smallest closed set containing A.
 - ii) A is closed iff $A = \overline{A}$.
 - iii) If $A \subset B$ then $\overline{A} \subset \overline{B}$.
 - iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

v)
$$\overline{(\overline{A})} = \overline{A}$$
.

(8)

- 2. a) If A is a subset of a space X. Then prove the followings.
 - i) $A \cup D(A)$ is closed.

ii)
$$\overline{A} = A \cup D(A)$$
 where D(A) is the derived set.

(8)

- b) Define base for a topology. Then prove the following two properties on a base β are equivalent.
 - i) β is a base for τ .
 - ii) For each $G \in \tau$ and each $P \in G$ there is $\mathfrak{V} \in \beta$ such that $P \in U \subset G$.

[Contd...

(8)

PGIS-N 1029 B-2K13/2013

(1)

(8)

3.	a)	Let f be a mapping of a space X into space Y and S be the subbase for the topology Y then prove the followings are equivalent.	on /
		i. f is continuous.	
		ii. The inverse image of each member of S is open in X.	(8)
	b)	If X,Y are the topological spaces and $f: X \to Y$ be a mapping then prove that	f is
		$\frac{1}{2}$	(8)
The state of the s	a)	Define a T_2 -space. If X is T_2 -space and $f: X \to Y$ is a closed bijection. Then sh that Y is T_2 -space.	ow (8)
	b)	Show that every completely normal space is normal and hence every T_s -space if T_4 -space.	is a (8)
5.	a)	State the two axioms of countability. Prove that every 2°-countable space 1°-countable. Is the converse true? Justify your answer.	is (8)
	b)	Define subsequence of a sequence. Let $F: N \to X$ converges to 'a' in X then ever subsequence of f in X converges to 'a'.	ery (8)
6.	a)	Define a connected space. Show that any continuous image of a connected space connected.	e is (8)
	b)	Prove that in any connected space,	. ,
		i) Every component of a space X is a maximal connected set.	
		;;) The	(8)
7.	a)	Define compact topological space. Let A be a compact subset of Hausdorff space and $P \notin A$ then show that there exists disjoint open sets U & V such that $P \in V$ and	X
	b)	Let X be a compact Hausdorff space and Y be an arbitrary space. If $f: X \to Y$ is continuous closed surjection then prove that Y is also Hausdorff.	8 a
8.	a)	Prove that in any metric space the set of all open spheres is a base for topology on 2	-
	b)	Define a Lindelof space. Show that every closed subspace of Lindelof space	