[Total No. of Pages: 4

SVIS 328 A-15

B.Sc. VI th Semester Degree Examination Mathematical Statistics (Applied Statistics and Operations Research) Paper -VIII

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Statistical tables and graph sheets will be supplied on request

Section-A

I. Answer the following

(15x1=15)

- 1 Quantity index numbers indicate the percentage change in
 - a) time
 - b) price
 - c) quantity
 - d) none
- 2. Laspeyre's and paasche's index numbers are 128 and 129 respectively. What is fisher's index

number

- a) 128.60
- b) 128.499
- c) 128.8
- d) None
- 3. Changes of bank interest rates indicate
 - a) trend
 - b) Cyclic changes
 - c) irratic changes

[Contd....

http://www.karnatakastudy.com
ges

		mtp.//www.karnatakastudy.com						
	d)	seasonal changes						
4.	Add	Additive mode of time series is						
	a)	TS+CI						
	b)	TSCI						
	c)	T+S+C+J						
	d)	$(T+S)\times(C+I)$						
5.	Inn	In matrix form of a LPP Z=CX is called						
	a)	Decision variable						
	b)	Objective function						
	c)	Non negativity restriction						
	d)	None						
6.	In n	In maximizing LPP if the feasible region is not closed, then the optimum solution is						
	a)	Unbounded						
	b)	psuedo optimum						
	c)	does not exist						
	d)	None						
7.	Transportation problem is a special case of							
	a)	LPP						
	b)	A.P						
,	c)	Inventory model						
	d)	Network						
8.	Assignment problem is unbalanced if its cost matrix is							
	a)	Square matrix						
	b)	not square matrix						
	c)	identity matrix						
	d)	None						
9.	The	e time gap between placing of order and arrival of goods is called as						
	a)	Slack time						
	b)	Surplus time						

c)

lead time

http://www.karnatakastudy.com

	d)	Interval									
10.	In a	In a zero sum game the gains of all the players is:									
	a)	Positive									
	b)	Zero									
	c)	negative									
	d)	Non zero									
11.	index number is the GM of laspeyre's and paasche's index number										
12.	Tes	s for an ideal inde	x number	are	and and						
13.											
14.	Ifth	e value of a game	is zero, th	en it i	s called	gar	ne				
15.	PEF	RT stands for	<u>.</u>								
				S	Section-B						
n.	Ans	wer any five quest	ions					(5×5=25)			
16.	Explain the methods of computation of index numbers										
17.	What are the methods of measurement of trend? Describe any two of them										
18. Solve the following LPP graphically											
	Ma	$x Z=2x_1+4x_2$			•	1					
	817	$x_1 + 2x_2 \le 5$									
	J#4.	$x_1 + x_2 \le 4$									
		$x_1, x_2 \ge 0$						•			
19.	Des	cribe vogels appro	ximation	metho	od						
20.		n the following da		unkn	own value	if the ratio	of laspeyre's	and paashe's			
	inde	ex numbers is L:P:		0	0						
		X	P ₀ P _i 2 4	20	ν _ι 10						
		Y	2 x	10	2						
21.	Wh	at si network analy	sis? Expla	in PE	RT and CP	M					
22.	Exp	lain various types	of costs as	socia	ted with In	ventories					
				S	Section-C						
III.								(4×10=40)			
23.		lain the main steps		nstruc	tion of an i	ndex num	ber				
SVI	S 379	3A-15			(3)			[Contd			
~ , 1					ν-,		-	-			

http://www.karnatakastudy.com

http://www.karnatakastudy.com

- 24. Describe simple averages method and ratio to moving average method of computing seasonal indices
- 25. Describe big -m -method
- 26. Solve the following assignment problem to maximum the Sales(Rs. Lakhs)

				District		
		Α	В	C	D	
	P	140	112	98	154	
	Q	90	72	63	99	
salesman	R	110	88	77	121	
	S	80	64	56	88	

27. For a (2x2) two person zero sum game without saddle point, having pay off matrix for player A

$$\begin{array}{ccc}
B_1 & B_2 \\
A_1 \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
\end{array}$$

Prove that the optimum mixed strategies $S_A = \begin{bmatrix} A_1 & A_2 \\ P_1 & P_2 \end{bmatrix}$ and $S_B = \begin{bmatrix} B_1 & B_2 \\ q_1 & q_2 \end{bmatrix}$

are given by $\frac{p_1}{p_2} = \frac{a_{22} - a_{21}}{a_{11} - a_{12}}, \frac{q_1}{q_2} = \frac{a_{22} - a_{12}}{a_{12} + a_{21}}$ where $p_1 + p_2 = 1$, $q_1 + q_2 = 1$ and the value of the

game is
$$V = \frac{a_{11}a_{21} - a_{21}a_{12}}{(a_{11} + a_{22}) - (a_{12} + a_{21})}$$

28. The time required for various activities of a project are as follows

Activity 1-2 1-3 1-4 2-4 3-4 4-5 time(days) 9 8 15 5 10 2

- i) Draw network diagram
- ii) Obtain the critical path
- iii) Find minimum duration of the project.

http://www.karnatakastudy.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से