Roll No.

SVIS 331 A-2K13

B.Sc. VIth Semester Degree Examination Methometics

Mathematics

(Numerical Analysis)

Paper - 6.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates.

- 1) Answer all the sections.
- 2) Non programmable scientific calculators may be used.

Section - A

Answer any ten of the following.

 $(10 \times 2 = 20)$

- 1 If 0.667 is the approximate value of $\frac{2}{3}$ find the absolute relative and percentage errors.
- $\stackrel{\text{?}}{\Rightarrow}$ Find the relative error of the approximate number x=2.354 if all its digits are valid.
- 3. Define Absolute and Relative errors.
- 4. Find the relation between α , β and γ in order that $\alpha + \beta x + \gamma x^2$ may be expressible in one term in the factorial notation.
- 5. Find the function whose first difference is e^x .
- 6. Prove that $(1+\Delta)(1-\nabla)=1$
- 7. Prove that

$$\Delta^4 y_0 = y_4 - 4y_3 + 6y_2 - 4y_1 + y_0$$

- 8. If $u_0 = 3$, $u_1 = 12$, $u_2 = 81$, $u_3 = 200$, $u_4 = 100$, $u_5 = 8$ find the value of $\triangle 540$.
- 9. Define Interpolation and extrapolation.
- 10. Write Newton's divided difference formula.
- 11. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by dividing the interval into five equal parts.
- 12. State simpson's 1/3 rule for numerical integration of f(x).

[Contd....

Section - B

Answer any five of the following:

 $(5 \times 6 = 30)$

- Find the product of 349.4 and 752.5 and state how many the result are trust worthy, given 1. that the numbers are correct to 4 significant figures.
- Solve, $x^3 2x 1 = 0$, by Regula falsi method. Given that the root lies between 1 and 2. 2.
- Solve by Jocobi's iteration method, the equations. 3.

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

- Express $f(x) = 2x^3 3x^2 + 3x 10$ in factorial notation and also find its successive 4. differences.
- 5. Prove the identity

$$u_1x + u_2x^2 + u_3x^3 + \dots$$
 so $\infty = \frac{x}{1-x}u_1 + \frac{x^2}{(1-x)^2}\Delta u_1 + \frac{x^3}{(1-x)^3}\Delta^2 u_1 + \dots$ so ∞

5

6. Given

$$f(x) = 1$$

6

Estimate f(2.5).

7. The following table is given

5

what is the form of f(x)?

Section - C

Answer any five of the following

 $(5 \times 6 = 30)$

1. Find, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 3.5 from the table.

x: 2 3 4 5 6 y=f(x) 0.3010 0.4771 0.6020 0.6990 0.7781

2. The following table, gives the values of $\sin \theta$ for different values of θ .

 θ 0° 10° 20° 30° 40° $\sin \theta$ 0.000 0.1736 0.3420 0.5000 0.6428 Find the value of Cos10°.

The co-ordinates (x,y) of points on a curve y = f(x) are given in the following table.

 X
 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2

 Y
 1
 1.1
 1.3
 1.5
 1.6
 1.4
 1.3

 Heims Singue 1
 2.70
 1.6
 1.4
 1.3

Using Simpson's 3/8th rule find the volume of revolution obtained when the curve is bounded by the lines x = 0 and x = 1.2 is rotated about x-axis through 2π radians.

- 4. Calculate $\int_{1}^{5.2} \log x \, dx$ by using weedle, s rule with seven ordinates.
- 5. Using Picards method of successive approximation find the solution of the equation $\frac{dy}{dx} = 1 + xy$, subject to the condition y = 0 when x = 0, upon third approximation and obtain y when x = 0.2.
- 6. Find by Taylor's series method the value of y at x = 0.2 correct to four decimal places if y(x) satisfies, $\frac{dy}{dx} = x y^2$ and y(0)=1.
- 7. Solve $\frac{dy}{dx} = 1 + xy$ with initial condition y(3)=5 for x = 5 by Runge kutta method.

3.