http://www.karnatakastudy.com

Roll No. [Total No. of Pages: 3

SVIS 327 A-16 B.Sc. VIth Semester Degree Examination Mathematics (Graph Theory)

Paper: BSM 6.3 (d)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer all sections.

Section - A

Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1. Is V is a cut vertex of connected graph G. Then draw the graph G V is disconnected at least two components.
- 2. Give an Example of tree with six vertices and $\Delta(T) \ge 4$
- 3. Define the terms (i) Bridge (ii) Block.
- 4. Define spanning tree and draw spanning tree of K₃.
- 5. Define rooted tree. Give an Example with five vertices
- 6. Draw two different binary trees with 13 vertices.
- 7. Find the connectivity of a complete graph Kp with $p \ge 2$
- 8. Define Eulerian trail. And Eulerian cycle.
- 9. Show that Every simple K regular graph with 2K-1 vertices is Hamiltonian.
- 10. Give an Example of an Eulerian graph with six vertices which is also a bipartite graph.

[Contd....

11. In a given tree then identify

- i) Vertices which are leaves.
- it) Vertices having the level number 4

12. Find the sum of the path length of given binary tree.

Section - B

Answer any Five of the following:

 $(5 \times 6 = 30)$

- 1. Every Non trivial connected graph has at least two vertices which are not cut vertices.
- 2. If G is tree, then every two distinct vertices of G are joined by unique path of G.
- 3. A tree has 2n vertices of degreel, 3n vertices degree 2 n vertices of degreee 3, then find the number of vertices and edge in a tree.
- 4. Show that of a (p, q) Graph G, is a forest with k components. then q = p k.

http://www.karnatakastudy.com

- 5. Draw all binary tree with 5 End vertices. Find the path length of each.
- 6. Construct a graph G satisfying K (G) = 1, $\lambda(G) = 3$, $\delta(G) = 4$.
- 7. Explain the Konigsberg bridge problem.

Section - C

Answer any Five of the following:

 $(5 \times 6 = 30)$

1. Which of the following 1 - edge connected.

- 2. Show that every edge cut set in a non separable graph with $p \ge 3$ vertices contains at least two edges.
- 3. Prove that there is one and only one path between every pair of vertices in a tree.
- 4. In a Binary tree T. on n vertices then show that the Number of pendant vertices is $\left(\frac{n+1}{2}\right)$. Is it possible to draw a tree with 5 vertices having a degree 1, 1, 2, 2, 4
- 5. Prove that if Every block of connected graph G is Eulerian then G is Eulerian
- 6. A Graph is Hamiltonian if and only if its closure is Hamiltonian
- 7. In tree T be complete m ary tree of order n with p leaves and q internal vertices then prove that $q = \frac{n-1}{m}$