SVS-N 313 B-17

B.Sc. Vth Semester Degree Examination PHYSICS

(Quantum Mechanics Statistical Mechanics & Material Physics)

Paper - 5.2

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer All the questions from section - A, any Five from section - B and any Four from section - C

SECTION - A

1. Whether Matter waves are electromagnetic waves?

 $(15 \times 1 = 15)$

- 2. Give the impression for de Broglie wavelength in terms of temperature.
- 3. Write any one property of wave function.
- 4. What do you mean by zero point energy.
- 5. Define degeneracy.
- **6.** What is ensemble?
- 7. State the principle of equal a priori probability.
- **8.** What is the unit of magnetic flux?
- **9.** What is the permeability of a magnetic material?
- 10. Whether superconductor can expell magnetic field?
- 11. What is persist current in super conductor?
- 12. Which force dominates in nano materials?
- 13. How do you get the quantum film?
- 14. What will be the area to volume ratio in nano materials?
- 15. Mention any one use of superconductors.

http://	/www.i	karnatal	kastud	y.c	om
---------	--------	----------	--------	-----	----

http://www.karnatakastudy.com

SECTION - B

Answer any Five of the following:

 $(5 \times 5 = 25)$

- 16. State and explain Heisenberg uncertainty principle.
- 17. Obtain the expression for the energy of a particle in a one dimensional box.
- 18. Distinguish between microcanonical, canonical and grand canonical ensembles.
- 19. Mention the assumptions made by Maxwell-Boltzmann Statistics.
- 20. Compare para, dia and ferromagnetic materials.
- 21. Write a note on special features of nano materials.
- 22. Explain high temperature super conductivity.

SECTION - C

Answer any Four of the following:

 $(4 \times 10 = 40)$

- 23. a) Obtain the expression for Compton shift.
 - b) Calculate the Compton wavelength for an electron

Given:
$$h = 6.625 \times 10^{-34} \text{ J-S}$$

$$m_e = 9.1 \times 10^{-31} \text{ kg, c} = 3 \times 10^8 \text{ ms}^{-1}$$

(7 + 3 = 10)

- 24. a) Derive time independent Schrodinger's wave equation for one dimension.
 - b) The certainty in velocity is 100m/s. Calculate the uncertainty in the position of (7 + 3 = 10)
 - i) 20 gm bullet, and
 - ii) a proton $(m_p = 1.67 \times 10^{-27} \text{kg})$
- 25. a) Derive the expression for Bose-Einstein distribution law.
 - b) Calculate the probability in tossing a coin 10 times we get (6 + 4 = 10)
 - i) All heads
 - ii) 5 heads 5 tails
 - iii) 3 heads 7 heads
 - iv) 7 heads 3 tails

http://www.karnatakastudy.com

- 26. a) Explain BCS theory of superconductivity.
 - b) Distinguish between Type-I and Type -II superconductors (5 + 5 = 10)
- 27. a) Explain preparation of nano materials by Physical-Vapour-Deposition (PVD) method.
 - b) Explain special significance of nano materials. (5 + 5 = 10)
- 28. a) State and explain Curie-Weiss law.
 - b) Explain the Langevin's theory of diamagnetism. (5 + 5 = 10)
