Roll No.

[Total No. of Pages: 3

SVS 338 B - 15 B.Sc. Vth Semester Degree Examination Mathematics (Vector Analysis and Laplace Transformation) Paper -5.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer all the Sections

Section - A

Answer Any TEN of the following

 $(10\times2=20)$

- 1. Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of vector i + 2j + 2k
- 2. If, $uF = \nabla V$ where u, V are scalar fields and F is a vector field. Show that. F.Curl F = 0
- 3. If $\vec{f} \& \vec{g}$ are irrotational. Show that $\vec{f} \times \vec{g}$ is solenoidal
- 4. Show that, the area bounded by a simple closed curve C is given by $\oint_C (xdy ydx)$
- 5. Find the Fourier coefficient a_0 for the function, $f(x) = x x^2$ from, $x = -\pi to \pi$
- 6. Find the Fourier coefficient a_n if f(x) = |x|, where $-\pi < x < \pi$
- 7. Find the half range fourier coefficient b_n , for the function $f(x) = \begin{cases} x & , & 0 < x \le \frac{\pi}{2} \\ \pi x & , & \frac{\pi}{2} < x \le \pi \end{cases}$
- **8.** Evaluate, $L[Cosh\ at cos\ at]$

[Contd....

http://www.karnatakastudy.com

- 9. Find the Laplace transform of $e^{-2t} \cosh 4t$
- 10. Verify convolution theorem for the functions, f(t) = t and $g(t) = e^t$
- 11. Find the inverse Laplace transform of $\frac{S+b}{S^2+a^2}$
- 12. Let, f(t) be of exponential order having derivative, which is continuous and . If

$$L[F(t)] = f(S)$$
, then prove that $L[F^{1}(t)] = Sf(S) - F(0)$

Section - B

Answer Any Five of the following

 $(5 \times 6 = 30)$

- 1. Find the constants a&b such that the surfaces $3x^2 2y^2 3z^2 + 8 = 0$ is orthogonal to $ax^2 + y^2 = bz$ at the point (-1, 2, 1)
- 2. Show that $\nabla \cdot \left[r\nabla\left(\frac{1}{r^3}\right)\right] = \frac{3}{r^4}$, Where $r = x^2 + y^2 + z^2$
- 3. Prove that, $div(\vec{f} \times \vec{g}) = \vec{g} curl \vec{f} \vec{f} curl \vec{g}$
- 4. Evaluate by using stokes theorem $\oint_C (\sin z dx \cos x dy + \sin y dz)$ where C is the boundary of the rectangle $0 \le x \le \pi, 0 \le y \le 1, z = 3$
- 5. Obtain the Fourier Series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$
- 6. Find the Fourier series for the following function over the interval (-3, +3)

$$f(x) = \begin{cases} 1 + 2x , & -3 < x < 0 \\ 1 - 2x , & 0 < x < 3 \end{cases}$$

7. Expand $f(x) = \frac{1}{4} - x$, if $0 < x < \frac{1}{2}$ in the Fourier series of sine terms $= x - \frac{3}{4}$, if $\frac{1}{2} < x < 1$

http://www.karnatakastudy.com

Section - C

Answer Any Five of the following

 $(5 \times 6 = 30)$

- 1. Find the Laplace transformation of
 - a) $\sin^2 t$
 - b) $e^{2t}\cos^2 t$
- 2. Evaluate, $L\left[\frac{\cos 2t \cos 3t}{t}\right]$
- 3. Find f(t), if $L[f(t)] = \frac{s+3}{(s^2+6s+13)^2}$
- **4.** Evaluate $L^{-1} \left[\frac{1}{s^2(s^2+1)(s^2+9)} \right]$
- 5. Find the inverse Laplace transform of $\frac{1}{s^2(s^2-a^2)}$ by using the convolution theorem
- 6. Solve, $\frac{d^2y}{dt^2} + 9y = 18t$ where, y(0) = 0, $y(\pi/2) = 0$ by using Laplace transformation
- 7. Express the function in terms of unit step function and their Laplace transformation $f(t) = \begin{cases} 2t, & 0 < t < \pi \\ 1, & t > \pi \end{cases}$