Roll No.

[Total No. of Pages: 3

SIIIS 193 B-14 B.Sc. IIIrd Semester Degree Examination Mathematics (Vectors and Solid Geometry) Paper - 3.1

Time: 3 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer all the sections and compulsory mention the sections.

SECTION-A

L Answer any Ten of the following:

 $(10 \times 2 = 20)$

- 1. Find $\vec{a} \times (\vec{b} \times \vec{c})$ where $\vec{a} = i + 2j$, $\vec{b} = j + 2k$, $\vec{c} = i + 2k$.
- 2. Show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{b} \vec{d}] \vec{c} [\vec{a} \vec{b} \vec{c}] \vec{d}$
- 3. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{c}$ are reciprocal system of vectors Then P.T. $\vec{a}\vec{a}' = \vec{b}\vec{b}' = \vec{c}\vec{c}' = 1$
- 4. Find the locus of a point which is equidistant from (1,2,3) and (3,2,-1).
- 5. Find the centroid of a triangle ABC where A(2,2,-1), B(2,0,3) and C(2,1,-5).
- 6. Using the concept of direction ratio's show that the points A(5,11,-6), B(3,5,-2) and C(2,2,0) are collinear
- 7. Find the area of Δ^{le} whose vertices are (2,5,-4), (-1,4,-3), and (4,7,-6).
- 8. Find the angle between pair planes 6x-3y-2z-7=0, x+2y+2z+9=0.
- 9. Find the perpendicular distance of the point (1,-1,3) from the plane 5x+2y-7z+9=0.
- 10. Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 3x+y+z=7.

http://www.karnatakastudy.com

- 11. Find the equation of plane passing through the point (2,3,4) and parallel to the plane 5x-6y+7z=3
- 12. Show that the lines $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{1}$ and $\frac{x-2}{3} = \frac{y-2}{2} = \frac{z-6}{4}$ are coplanar.

SECTION-B

II. Answer any Two of the following

 $(2 \times 5 = 10)$

- 1. Show that the vector $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$ and $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.
- 2. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors Then express $\vec{b} \times \vec{c}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
- 3. Find the unit vector coplanar with \vec{a} and \vec{b} perpendicular to \vec{c} where $\vec{a} = i j + 2k$, $\vec{b} = 2i + j 3k$, and $\vec{c} = i + 2j k$

SECTION-C

III. Answer any Three of the following

 $(3 \times 5 = 15)$

- 1. The direction cosines of the two lines which are connected by the relation l-5m+3n=0 and $7l^2+5m^2-3n^2=0$
- 2. Find a and b such that the points (a,1,1), (1,b,-1) and (2,3,-3) are collinear.
- 3. A line makes angles $\alpha, \beta, \gamma, \delta$ with four diagonals of a cube show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.
- 4. Find the projection of AB and CD where A=(3,4,5),B(4,6,3),C(-1,2,4) and D=(1,0,5).

SECTION-D

IV. Answer any Three of the following.

 $(3 \times 5 = 15)$

- 1. Derive the plane passing through a point and parallel to the given lines (both vector and cartisian form).
- 2. Find the equation of the plane passing through a point (2,2,1), (9,3,6) and perpendicular to the plane 2x+6y+6z=9.

http://www.karnatakastudy.com

- 3. Find the foot of the \perp^r from a point (-2,7,-1) on the plane 3x-4y+z+9=0
- 4. Find the equation of the plane containing the line $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z-3}{4}$ and perpendicular to the plane x-2y+3z=4.